Multitemporal/multiband SAR classification of urban areas using spatial analysis: statistical versus neural kernel-based approach
نویسندگان
چکیده
In this paper, we derive two techniques for the classification of multifrequency/multitemporal polarimetric SAR images, based respectively on a statistical and on a neural approach. Both techniques are especially designed to exploit the spatial structure of the observed scene, thus allowing more stable classification results. Such techniques are useful when looking at mediumto large-scale features, like the boundaries between urban and nonurban areas. They are applied to a set of SIR-C images of a urban area, to test their effectiveness in the identification of the different classes that compose the observed scene. A lower and an upper bound to the classification performance are introduced to characterize their limits. They correspond respectively to pixel-by-pixel classification and to the joint classification of the pixels belonging to the different classes identified in the ground truth. The results achieved with the two approaches are quantitatively analyzed by comparing them to the ground truth. Moreover, a hybrid approach is presented, where the homogeneous regions identified through statistical segmentation are classified using a neurofuzzy technique. Finally, a quantitative analysis of the results achieved with all the proposed techniques is carried out, showing that their classification performance is much higher than the lower bound and reasonably close to the upper bound. This is a consequence of their effectiveness in the exploitation of the spatial information.
منابع مشابه
Multitemporal RADARSAT-2 Polarimetric SAR Data for Urban Land Cover Classification Using Support Vector Machine
This research investigates the various RADARSAT-2 polarimetric SAR features for urban land cover classification using object-based method combining with support vector machine (SVM) and ruled-based approach. Six-dates of RADARSAT-2 fine-beam polarimetric SAR data were acquired in the rural-urban fringe of Greater Toronto Area during June to September, 2008. The major landuse/land-cover classes ...
متن کاملRADARSAT-2 Polarimetric SAR Data for Urban Land Cover Classification: A Multitemporal Dual-Orbit Approach
This research investigates multitemporal dual-orbit RADARSAT-2 polarimetric SAR data for urban land cover classification using an object-based support vector machine (SVM). Sixdate RADARSAT-2 high-resolution SAR data in both ascending and descending orbits were acquired in the rural-urban fringe of the Greater Toronto Area during the summer of 2008. The major landuse/land-cover classes include ...
متن کاملMultitemporal Space- borne Polarimetric SAR Data for Urban Land Cover Mapping
Urban represents one of the most dynamic areas in the global change context. To support rational policies for sustainable urban development, remote sensing technologies such as Synthetic Aperture Radar (SAR) enjoy increasing popularity for collecting up-to-date and reliable information such as urban land cover/land-use. With the launch of advanced spaceborne SAR sensors such as RADARSAT-2, mult...
متن کاملClassification and Modelling of Urban Micro-climates Using Multisensoral and Multitemporal Remote Sensing Data
Remote sensing has widely been used in urban climatology since it has the advantage of a simultaneous synoptic view of the full urban surface. Methods include the analysis of surface temperature patterns, spatial (biophysical) indicators for urban heat island modelling, and flux measurements. Another approach is the automated classification of urban morphologies or structural types. In this stu...
متن کاملMultitemporal Radarsat-2 Polarimetric Sar Data for Urban Land-cover Mapping
The objective of this research is to evaluate multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using a novel classification scheme. Six-date RADARSAT-2 Polarimetric SAR data in both ascending and descending orbits were acquired during June to September 2008 in the rural-urban fringe of the Greater Toronto Area. The major land-cover types are builtup areas, roa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Geoscience and Remote Sensing
دوره 41 شماره
صفحات -
تاریخ انتشار 2003